Kinetics of corrosion

consider the E/pH diagram for two metal/ water systems at pH of x, in M/H_2O system two electrodics reactions, $M \square M_2 + 2e^-$ and $2H^+ + 2e^- \qquad H_2$ are attempting to co-exist. This is irreversible = Corrosion

E-pH diagram for M & M₁ /water

• Draw diagram

Reversible electrode

- At pH X,
- If there is no oxygen, metal M will corrode whereas, for metal M₁ corrosion can only occur in the presence of oxygen or some oxidants added to the M₁/H₂0 system.
- For M₁/H₂0 system, in the absence of oxygen, corrosion will not occur and only one equilibrium will try to establish itself.
- $M_1 \square M_1^{2+} + 2e^-$ This is a reversible electrode, No corrosion

Irreversible electrode

- For
- M \square M²⁺ + 2e- and 2H⁺ + 2e- \square H₂
 - 2 equilibria trying to establish themselves on the electrode = Irreversible.

This is CORROSION.

It has been proved beyond par adventure that Corrosion is electrochemical. Hence Current, I is a measure of its rate of rxn.

Equilibrium condition

 NOTE: I = current and I/A = current density=i, where A = area of electrode
At eqbm,

 $\square \square M^+ electronation i$ $\square \square M^+ + e - de - electronation, i$ $i = i = i_0 (exchange current density)$

Exchange current density, i_o

• I_o is xteristic of the rxn on a particular metal

- $\Delta \phi_e = P. D$ @ eqbm, this is xteristic of the rxn
- When there is departure from eqbm, we have Drift current density, i_{nett} Hence, either

i or i bicoms higher than the other a nett current will flow $i_{nett} = i - i$

Departure from Eqbm

- $\Delta \phi$ is P.D @ departure from eqbm.
- D4, $\Delta \phi \Delta \phi_e = \varepsilon$; xtra potential by which electrode departs from eqbm., called OVERPOTENTIAL .
- If E is +ve, i increases & i decreases, D4
- i » i there will be net anodic current, if E is
 - -ve, converse is true.

Anodic & Cathodic current

- If E is large and +ve, E can be called E_a anodic overpotential,
- $i = i_o \exp^{\beta ZFE/RT}$ 1 also,
- $i = i_o \exp^{-(1-\beta)ZFE/RT}$ 2 when \mathcal{E} is large and -ve Eqns 1 & 2 are BUTLER- VOLMER EQUATIONS
- E can be obtained experimentally.
- ß = symmetry factor, all other symbols have their usual meanings.

Anodic & Cathodic rxns

- From eqns 1 & 2,
- $\log i = \log i_0 + \beta ZF \epsilon_a / 2.3 RT 3$
- $\log i = \log i_0 (1-\beta)ZFE_c/2.3RT 4$
- Let 2.3RT/ β ZF = b_a and 2.3RT/(1- β)ZF = b_c
- Logi = $\log_{0} + \epsilon_{a} / b_{a} \dots 5$
- $logi = logi_{o} + E_{c} / b_{c}$ 6 from 5&6,

Tafel Eqns

From 5& 6, we obtain,

- $b_c \log i = b_c \log i_o + E_c$ 8
- Simplifies further,
- $b_a \log i = a_a + E_a$ (7a) & $b_c \log i = a_c + E_c$ (8a)
- Equations 7 & 8 are called TAFEL EQUATIONS
- A plot of E_a versus log i_{a nett} will give a curve, the extrapolation of the linear portion to the y axis will give a_a and the slope b_a

Non-reversible electrodes

- Process of corrosion is irreversible
- Consider Fe in HCl, given by eqn.,
- Fe + 2HCl \square FeCl₂ + H₂ or
- Fe + 2H⁺ \Box Fe²⁺ + H₂
- At metal or electrode surface there are,
- PD as a result of Fe in solid and Fe²⁺ in soln
- PD as a result of hydrogen evolution
- Corrosion occurs when the 2 eqlibia try to compromise each other.

MIXED POTENTIAL THEORY

- The 2 equilibria polarise toward each other
- The compromise potential attained is termed
- MIXED POTENTIAL = Corrosion potential